SCHUR INDICES OF CHARACTERS OF GROUPS RELATED TO FINITE SPORADIC SIMPLE GROUPS

BY

WALTER FEIT

Yale University, Department of Mathematics P.O. Box 208283, New Haven, CT 06520-8283, USA e-mail: feit@math, yale. edu

ABSTRACT

Let G be a finite sporadic simple group. Then there exist groups *n.G, n.G.2* and, in case n is even, *n.G.2i,* the group isoclinic to but not isomorphic to *n.G.2.* The Schur indices of all irreducible characters of these groups are computed. In a previous paper this was done for the groups *n.G* (with one exception). The division algebra corresponding to a character is determined by all the local Schur indices. These are all listed in the tables in Section 6 using the notation from the ATLAS.

1. Introduction

Let G be a finite sporadic simple group. Then G has a cyclic Schur multiplier $\langle z \rangle$ and the outer automorphism group of G has order 1 or 2. In the latter case there exists an outer automorphism σ of order 2 with $\sigma(z) = z^{-1}$. If $|\langle z \rangle| = n$ and σ exists then there exists an "envelope" *n.G.2* of G. If furthermore *n* is even, there is also another envelope, the isoclinic group $n.G.2i$. See [2, p. xxiii]. Throughout this paper *n.G.2* denotes the group whose character table is printed in the ATLAS and *n.G.2i* denotes the isoclinic group when n is even.

The purpose of this paper is to describe all Schur indices of all irreducible characters of all groups *n.G.2* and *n.G.2i.* In a previous paper [4] all Schur indices of the groups *n.G* were computed (there was one ambiguity about a faithful character of *2.Suz* of degree 228,800). The earlier paper was written before the appearance of the ATLAS [2]. The information in the ATLAS is sufficient to settle the open case mentioned above; see Section 5. Also C. Jansen

Received November 20, 1994

has informed me that he had previously settled this case by using information about the Brauer characters of *2.Suz.* Furthermore, arguments similar to those used in [4], described below, can be used to compute all Schur indices of all envelopes of sporadic groups. The ATLAS, amongst other things, provides a standard notation. Accordingly the tables in Section 6 incorporate those of [4], though the results of [4] are just quoted, not proved again.

As in the proofs in [4], it is important for some of the results to know tables of irreducible Brauer characters. I am grateful to C. Jansen and R.A. Wilson for much information about these [6], [7], [8]. I am also grateful to C. Jansen for computing some inner products.

The notation is standard and is that used in [4].

2. Isoclinism

Throughout this section $M = [M, M]$ is a finite group with a cyclic center of even order and an outer automorphism σ of order 2. Thus M contains a unique central subgroup $\langle z \rangle$ of order 2 and $\sigma(z) = z$.

There exist 2 groups $H = \langle M, y \rangle$ and $\hat{H} = \langle M, \hat{y} \rangle$ with

$$
|H: M| = |\hat{H}: M| = 2
$$

such that conjugation by y and \hat{y} induces the automorphism σ on M, and y and \hat{v} can be chosen so that

$$
\left\{y^2,\hat{y}^2\right\} = \left\{1,z\right\}.
$$

The groups H and \hat{H} are isoclinic. See [2, p. xxiii].

Let K be a subgroup of M which contains the center of M such that $\sigma(K) = K$. There is a bijection between the conjugacy classes C and \hat{C} of $\langle K, y \rangle - K$ and $\langle K, \hat{y} \rangle - K$ and irreducible characters $\eta, \hat{\eta}$ of $\langle K, y \rangle$ and $\langle K, \hat{y} \rangle$ such that the following holds:

(2.1)
$$
\begin{array}{ll}\n\eta(x) = \hat{\eta}(x) & \text{if } x \in K, \\
\eta(x) = i\hat{\eta}(\hat{x}) & \text{if } x \in C \subseteq \langle K, y \rangle - K, \quad \hat{x} \in \hat{C} \subseteq \langle K, \hat{y} \rangle - K. \\
\eta(x^2) = -\hat{\eta}(\hat{x}^2)\n\end{array}
$$

In particular this applies to the case that $K = M$.

For any finite group K and any irreducible character η of K let

$$
\nu_K(\eta) = \frac{1}{|K|} \sum_{x \in K} \eta(x^2).
$$

THEOREM 2.2 (Frobenius and Schur): *Let 71 be an irreducible character of K.*

- (i) If $\eta \neq \bar{\eta}$ then $\nu_K(\eta) = 0$.
- (ii) If $\eta = \bar{\eta}$ then one of the following occurs:
	- (a) $m_{\infty}(\eta) = 1$ and $\nu_K(\eta) = 1$.
	- (b) $m_{\infty}(\eta) = 2$ and $\nu_K(\eta) = -1$.

As a consequence of Theorem 2.2 we prove the following.

THEOREM 2.3: Let χ be an irreducible character of M.

(i) Suppose that $\chi^{\sigma} = \chi = \bar{\chi}$. Then χ extends to characters ζ, ζ' of H and $\hat{\zeta}, \hat{\zeta}'$ of \hat{H} respectively and the notation can be chosen so that ζ and ζ' are not real valued but $\hat{\zeta}$ and $\hat{\zeta}'$ are real valued with

$$
m_{\infty}(\tilde{\zeta})=m_{\infty}(\tilde{\zeta}')=m_{\infty}(\chi).
$$

- (ii) Suppose that $\chi^{\sigma} \neq \chi$. Then the induced characters χ^H and $\chi^{\hat{H}}$ are *irreducible. Furthermore*
	- (a) If $\chi = \bar{\chi}$ then $\overline{\chi^{\sigma}} = \chi^{\sigma}$ and

$$
m_{\infty}(\chi^H) = m_{\infty}((\chi^{\sigma})^H) = m_{\infty}(\chi^{\hat{H}}) = m_{\infty}((\chi^{\sigma})^{\hat{H}})
$$

$$
= m_{\infty}(\chi) = m_{\infty}(\chi^{\sigma}).
$$

(b) If $\chi^{\sigma} = \bar{\chi} \neq \chi$ then χ^{H} and $\chi^{\hat{H}}$ are real valued and

$$
m_{\infty}(\chi^H) \neq m_{\infty}(\chi^{\hat{H}}).
$$

Proof: (i) ζ and ζ' do not vanish on $H-M$. By (2.1) the notation can be chosen so that ζ and ζ' are both not real as

$$
\zeta(x) + \zeta'(x) = \chi^H(x) = 0
$$

for $x \in H - M$. By Theorem 2.2 this implies that

$$
0 = \nu_H(\zeta) = \frac{1}{|H|} \sum_{x \in M} \zeta(x^2) + \frac{1}{|H|} \sum_{x \in H-M} \zeta(x^2)
$$

$$
= \frac{1}{2} \nu_M(\chi) + \frac{1}{|H|} \sum_{x \in H-M} \zeta(x^2)
$$

and so

$$
\frac{1}{|H|}\sum_{x\in H-M}\zeta(x^2)=-\frac{1}{2}\nu_M(\chi).
$$

232 W. FEIT Isr. J. Math.

Hence by (2.1)

$$
\frac{1}{|H|} \sum_{x \in H-M} \hat{\zeta}(x^2) = -\frac{1}{|H|} \sum_{x \in H-M} \zeta(x^2) = \frac{1}{2} \nu_M(\chi).
$$

Therefore

$$
\nu_H(\hat{\zeta}) = \frac{1}{|H|} \sum_{x \in M} \chi(x^2) + \frac{1}{2} \nu_M(\chi) = \nu_M(\chi).
$$

The result follows from Theorem 2.2.

(ii)(a) If χ is afforded by a real representation, so are χ^{σ} , χ^H and $\chi^{\hat{H}}$. Conversely if χ^H or $\chi^{\hat{H}}$ is afforded by a real representation so is $\chi + \chi^{\sigma}$, the restriction to M. As $\chi \neq \chi^{\sigma}$ both χ and χ^{σ} are afforded by real representations.

(ii)(b) By Theorem 2.2

$$
\sum_{x \in M} \chi^H(x^2) = \sum_{x \in M} \chi^{\hat{H}}(x^2) = 0.
$$

Hence

$$
\nu_H(\chi^H) = \frac{1}{|H|} \sum_{x \in H-M} \chi^H(x^2),
$$

$$
\nu_{\hat{H}}(\chi^{\hat{H}}) = \frac{1}{|H|} \sum_{x \in \hat{H}-M} \chi^{\hat{H}}(x^2).
$$

By (2.1) this implies that $\nu_H(\chi^H) = -\nu_{\hat{H}}(\chi^{\hat{H}})$. The result follows from Theorem 2.2. \blacksquare

The following rather special result will also be of use in the sequel.

LEMMA 2.4: Let K be a *subgroup of M which contains the* center *of M such that* $\sigma(K) = K$. Let $L = \langle K, y \rangle$ and $\hat{L} = \langle K, \hat{y} \rangle$. Let χ be an irreducible character of M so that χ^H is irreducible and has values in Q. Suppose there *exists an irreducible character* η of *K* so that η^L *is irreducible with values in* Q and $((\chi^H)_L, \eta^L)$ is odd. Let p be a prime with $p \equiv 3 \pmod{4}$. Assume that K has a cyclic S_n -group and the *p*-block of K which contains η contains an irreducible *character* η_0 *such that* η_0^L *is reducible. Then one (or both) of the following occurs:*

$$
m_p(\chi^H) = m_p(\eta^L) = 2,
$$

$$
m_p(\chi^{\hat{H}}) = m_p(\eta^{\hat{L}}) = 2.
$$

Proof: Since χ^H is rational valued,

$$
m_p(\chi^H) = m_p(\eta^L) \le 2, \quad m_p(\chi^{\hat{H}}) = m_p(\eta^{\hat{L}}) \le 2.
$$

Let $\eta_0^L = \eta_1 + \eta_2$ and let $\eta_0^L = \hat{\eta}_1 + \hat{\eta}_2$. Then there exists $x \in L - K$ with $\eta_1(x) \neq 0$. Thus the notation can be chosen so that $\hat{\eta}_1(\hat{x}) = i\eta_1(x) \neq 0$. As $p \equiv 3$ (mod 4), not both η_1 and $\hat{\eta}_1$ have values in \mathbb{Q}_p . The result follows from Benard's Theorem, $[1]$ or $[4,$ Theorem 2.12].

3. Some criteria

In this section H and M are finite groups with $H = \langle M, y \rangle$ and $|H: M| = 2$, p is a rational prime. We will prove the main results to be used in the sequel to compute $m_p(\zeta)$ for irreducible characters ζ of H.

THEOREM 3.1: Let χ be an irreducible character of M and let $\mathbb{Q}(\chi) \subseteq L$ where *L* is a splitting field of χ .

- (i) If χ extends to irreducible characters ζ , ζ' of H then $L(\zeta) = L(\zeta')$ is a *splitting field of* ζ *and* ζ' *.*
- (ii) If χ^H is irreducible then L is a splitting field of χ^H .

Proof: This follows directly from basic properties of Schur indices.

If, for instance, χ extends to characters ζ and ζ' of H and $m_p(\chi) = 1$, then Theorem 3.1 implies that $m_p(\zeta) = m_p(\zeta') = 1$. However, if χ^H is irreducible and $[\mathbb{Q}_p(\chi):\mathbb{Q}_p(\chi^H)]=2$, then even if $m_p(\chi)=1$, there still remains the question of finding $m_p(\chi^H)$.

The following results yield useful criteria for computing $m_p(\zeta)$.

THEOREM A: Let x be a p' -element in H . Let B be a p -block of H containing *the irreducible character* ζ *. Assume that* $\zeta_v(x) \in \mathbb{Q}_p(\zeta)$ for *every irreducible character* ζ_v *in B. Then* $m_p(\zeta) | \zeta(x)$ *in the ring of algebraic integers.*

Proof: This is [4, Corollary 3.2]. \blacksquare

The proofs of the next two results are similar to that of Theorem A. We will say that an algebraic integer is **odd** if it is not divisible by 2.

THEOREM B: Let B be a p-block of M with $B^y \neq B$. Let x be a p'-element in *M* so that $\chi_u(x) = \chi_u(x^y)$ for every irreducible character χ_u in B. If $\chi = \chi_v$ is in *B* with $\chi(x)$ odd then χ^H is irreducible and $m_p(\chi^H)$ is odd.

Proof: Let $\{\chi_u\}, \{\varphi_i\}$ be the set of all irreducible, Brauer irreducible, characters in B respectively. Since $B \neq B^y$, each χ_u^H , φ_i^H is irreducible. Therefore

$$
\chi_u^H = \sum_i d_{ui} \varphi_i^H.
$$

Hence

(3.2)
$$
\chi_u^H(x) = \sum_i d_{ui}[\mathbb{Q}_p(\chi_u^H, \varphi_i^H) : \mathbb{Q}_p(\chi_u^H)] \varphi_i^H(x),
$$

where the sum ranges over a set of representatives of the algebraic conjugacy classes of irreducible Brauer characters over $\mathbb{Q}_p(\chi_u^H)$.

By assumption

$$
\chi_u^H(x) = \chi_u(x) + \chi_u(x^y) = 2\chi_u(x),
$$

$$
\varphi_i^H(x) = \varphi_i(x) + \varphi_i(x^y) = 2\varphi_i(x),
$$

as each φ_i is an integral linear combination of the χ_u restricted to p'-elements. Hence (3.2) implies that

$$
\chi_u(x) = \sum_i d_{ui} [\mathbb{Q}_p(\chi_u^H, \varphi_i^H) : \mathbb{Q}_p(\chi_u^H)] \varphi_i(x).
$$

If $\chi = \chi_u$ so that $\chi_u(x)$ is odd then for some i

$$
d_{ui}[\mathbb{Q}_p(\chi_u^H,\varphi_i^H);\mathbb{Q}_p(\chi_u^H)]
$$

is odd. Hence $m_p(\chi)$ is odd by [4, Theorem 2.10]. **11**

If, for instance, M has a cyclic center $\langle z \rangle$ with $z^y = z^{-1}$ and B is a faithful block of M, then $B \neq B^y$ in each of the following cases:

$$
|\langle z \rangle| = 3
$$
 or 6, $p \neq 3$,
\n $|\langle z \rangle| = 4$, $p \neq 2$,
\n $|\langle z \rangle| = 12$, any p.

These are precisely the cases that arise for covering groups of sporadic simple groups with $|\langle z \rangle| > 2$.

LEMMA 3.3: Suppose that $p \neq 2$. Let φ be an irreducible Brauer character of *M.* Then either φ^H is irreducible or $\varphi = \varphi^y$ and $\varphi^H = \psi + \psi'$, where $\psi \neq \psi'$ are *distinct irreducible* Brauer *characters of H.*

Proof: Let F be an algebraically closed field of characteristic p and let V be an *F[M]* module which affords φ . By the Mackey decomposition $(V^H)_M = V \oplus V^y$. Hence if φ^H is reducible, $V^y \simeq V$ and V^H contains an irreducible submodule W such that $W_M = V$. By Higman's Theorem [3, Corollary II.3.10], W is Mprojective as $p \neq 2$. Hence $W \mid U^H$ for some indecomposable $F[M]$ module U. As $(U^H)_M = U \oplus U^y$ and $V = W_M | (U^H)_M$, this implies that $V \simeq U$ and so $V^H = W \oplus W'$ with W and W' irreducible $F[H]$ modules. Let ψ, ψ' be the Brauer character afforded by W, W' respectively. Then

$$
\dim_F(\mathrm{Hom}(W, V^H)) = \dim_F(\mathrm{Hom}(W_M, V)) = 1.
$$

Therefore $\psi \neq \psi'$.

THEOREM C: Assume $p \neq 2$. Let B be a p-block of M and let \tilde{B} be the p-block *of H which covers B. Let x be a p'-element of M such that* $\chi_u(x^y) = \chi_u(x)$ for all *irreducible characters* χ_u *in B. Suppose that B contains an irreducible character* χ with $\chi(x)$ odd and χ^H irreducible. Assume further that every irreducible Brauer character in \tilde{B} has values in \mathbb{Q}_p . Then $m_p(\chi^H)$ is odd.

Proof: Let B_0 be the set of all irreducible Brauer characters φ in B with $\varphi^y = \varphi$. Let B_1 be a set of representatives of the pairs of distinct irreducible Brauer characters $\varphi^y \neq \varphi$ in B. Then

$$
\chi = \sum d_i \varphi_i + \sum (d_j \varphi_j + d'_j \varphi_j^y),
$$

where the first sum ranges over all $\varphi_i \in B_0$ and the second over all φ_j in B_1 . Thus either $d_i\varphi_i(x)$ is odd for some i or $(d_j + d'_j)\varphi_j(x)$ is odd for some j as $\varphi_i^y(x) = \varphi_i(x)$ for all j. By Lemma 3.3 there are 2 extensions $\psi_i \neq \psi'_i$ of every φ_i in B_0 . Hence

$$
\chi^H = \sum d_i(\psi_i + \psi'_i) + \sum (d_j + d'_j)\varphi_j^H.
$$

As d_i is odd for some φ_i in B_0 or $d_j + d'_j$ is odd for some φ_j in B_1 and every ψ_i, ψ'_i and φ_i^H has values in \mathbb{Q}_p , the result follows.

4. Outline of method

In this section G is one of the sporadic simple groups which have an outer automorphism of order 2. $M = n \cdot G$ and $H = n \cdot G \cdot G$ or $n \cdot G \cdot 2i$ in case n is even.

If χ is an irreducible character of M with $m(\chi) = 1$ and if χ extends to characters ζ , ζ' of H then $m(\zeta) = m(\zeta') = 1$ by Theorem 3.1 and these characters are not mentioned below. Similarly if $m(\chi) = 1$ and χ^H is irreducible with $\mathbb{Q}(\chi^H) = \mathbb{Q}(\chi)$ then $m(\chi^H) = 1$.

In the ATLAS, in case M has a cyclic center of even order, one choice of H is made. In this case $\nu_H(\zeta)$ is given for every irreducible character of ζ of H. Thus $m_{\infty}(\zeta)$ is determined. By using Theorem 2.3 it is then possible to determine $m_{\infty}(\hat{\zeta})$ for every irreducible character $\hat{\zeta}$ of \hat{H} .

If $p^2 \nmid |G|$, then $p^2 \nmid |H|$ and so $m_p(\zeta)$ can be read off from Benard's Theorem, [1] or [4, Theorem 2.12]. Only minimal information is needed about a p-block B of defect 1 to determine the Schur indices at p of all characters in B. This could be found in the ATLAS. However the procedure is much simplified by using $[5]$.

This leaves m_p for the primes p with $p^2 \mid |G|$.

In Section 5 the sporadic simple groups G which have an outer automorphism of order 2 are listed, followed in each case by the set of all primes p with p^2 | $|G|$.

If one of Theorems A, B, or C can be applied, for x in the conjugacy class X of G to a character χ , then χ is listed followed by one or more of Theorem A, X, Theorem B, X, Theorem C, X. In the last case Theorem C, X is followed by a prime for which the criterion is relevant.

For most characters these criteria are sufficient to compute m_p for all but at most one rational prime p. If there is then only one place over p in $\mathbb{Q}(\chi)$, the product formula determines *mp.* This is almost always the case.

If the results mentioned above are insufficient, then special arguments are used case by case, as appropriate.

An irreducible Brauer character of degree n is denoted by φ_n .

 χ_n^* denotes the faithful character of *n.G.2* or *n.G.2i* induced from the character χ_n of $n.G$ in the ATLAS in case the induced character is irreducible.

The final results are listed in Section 6.

5. The groups

 M_{12} , $\{2,3\}$

All characters of 2.G have values in \mathbb{Q}_3 . Hence $m_3(\zeta) = 1$ for all irreducible characters ζ of 2.6.2 or 2.6.2*i*. Furthermore there is only one place over 2 in every $\mathbb{O}(\zeta)$.

$$
M_{22}, \{2, 3\}
$$

$$
G.2, \qquad 2.G.2, \qquad 2.G.2i.
$$

$$
m(\chi_{10}^*) = m(\chi_{17}^*) = 1 \text{ as } \sqrt{-11} \in \mathbb{Q}_3.
$$

 $\chi_{19}^* = \chi_{20}^*$ is irreducible modulo 3.

$$
4.G.2, \qquad 4.G.2i.
$$

 $\chi_{24}^* = \chi_{25}^*, \chi_{26}^* = \chi_{27}^*, \chi_{28}^* = \chi_{29}^*$ are irreducible modulo 3. Modulo 3, $\mathbb{Q}(\varphi_{56}^*) = \mathbb{Q}(\sqrt{-2}) \subseteq \mathbb{Q}_3$ and the following hold. $\chi_{30}^* = \varphi_{56}^* + \varphi_{56}^* + \varphi_{64}^*.$ $\chi_{31}^* = \varphi_{56}^* + \varphi_{56}^{'*} + 2\varphi_{64}^* + \varphi_{160}^* + \varphi_{160}^{'*}.$ There is one place over 2 in each $\mathbb{Q}(\chi_n)$ unless $n = 26$ or 27.

Let x be an element of order 5 in G. Then $N_{4,G}(\langle x \rangle) = 4.N$ where $N = N_G(\langle x \rangle)$. Furthermore $|N| = 20$ and there is a unique pair $\eta, \bar{\eta}$ of faithful irreducible characters of 4.N. Choose the notation so that $\bar{\eta}\chi_{26}$ has the center of 4.G in its kernel. Let $L = 4.N.2$ or $4.N.2i$. Then $\eta^L = \bar{\eta}^L$ is rational valued, $\eta(1) = 4, \eta(x) = -1$ and

$$
((\chi_{26}^*)_L, \eta^L) = ((\chi_{26}^*)_4. N, \eta) = ((\chi_{26})_{4. N}, \eta) = \frac{4.144}{20} + \frac{1}{5} = 29.
$$

Similarly $((\chi_{30}^*)_L, \eta^L) = 35$. As χ_{30}^* and η^L are rational valued this implies that $m_p(\chi_{30}^*) = m_p(\eta^L)$ for all p. As $\chi_{26}^* \in \mathbb{Q}_2$ we see that

$$
m_2(\chi_{26}^*) = m_2(\eta^L) = m_2(\chi_{30}^*).
$$

3.G.2

 χ_n^* , $n \neq 38$. Theorem B, 1A or 7A. There is only one place over 3 in $\mathbb{Q}(\chi_n^*)$ for all n.

 $\mathbb{Q}(\chi_{38}^*) = \mathbb{Q}$, and modulo 3 $\chi_{38}^* = \varphi_{210} + \varphi_{210}'.$

6.G.2, *6.G.2i*

 χ_n^* , $n \neq 48, 49, 50$. Theorem B for 5A or 7A. There is only one place over 3 in $\mathbb{Q}(\chi_n^*)$ for all *n* and there is only one place over 2 in $\mathbb{Q}(\chi_n^*), n = 48, 49, 50$.

Modulo 3 $\chi_{48}^* = \varphi_{210} + \varphi_{210}'.$ χ_{49}^* , $\chi_{50}^* = \varphi_{308} + \varphi_{56} + \varphi_{56}'$.

12.G.2, 12.G.2i

 χ_{53}^* , χ_{54}^* . Theorem B, 7A. χ_n^* , 55 $\leq n \leq$ 59. Theorem B, 5A.

$$
J_2, \{2,3,5\}
$$

G.2

 $\chi_2^* = \chi_3^*, \chi_4^* = \chi_5^*, \chi_8^* = \chi_9^*, \chi_{14}^* = \chi_{15}^*$. Theorem A, 5A. $\chi_{16}^* = \chi_{17}^*$. Theorem C, 3B for $p = 5$. Theorem A, 15A. $\mathbb{Q}(\sqrt{6})$ is a splitting field for χ_{21} .

$$
2.G.2, \qquad 2.G.2i
$$

By [4] the places with Schur index 2 for $\chi_{24}, \chi_{36}, \chi_{37}, \chi_{38}$ as characters of 2.G are 2 and ∞ . Since $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\chi_n)$ for $n = 24,36,37$ and 38, $m_{\infty}(\chi_n) = 2$ while $m_p(\chi_n) = 1$ for $p \neq \infty$. Furthermore $\mathbb{Q}(\sqrt{-2})$ splits $\chi_{24}, \chi_{36}, \chi_{37}, \chi_{38}$ by Theorem 3.1.

A similar argument shows that $m_{\infty}(\chi_n) = 2$ while $m_p(\chi_n) = 1$ for $p \neq \infty$ in case of 2.G.2 for $n = 31,34,35$. Furthermore $\mathbb{Q}(\sqrt{-3})$ splits χ_{31},χ_{35} and $\mathbb{Q}(\sqrt{-7})$ splits χ_{34} .

 $\chi_{22}^* = \chi_{23}^*, \chi_{27}^* = \chi_{28}^*$. Theorem A, 5C. $\chi_{25}^* = \chi_{26}^*$. Defect 0 for 5. $\chi_{25}^* = \varphi_{72} + \varphi_{14} + \varphi'_{14}$ modulo 3. $\chi_{29}^* = \chi_{30}^*$. Theorem A for 15A. $\chi_{29}^* = \varphi_{100} + \varphi_{14} + \varphi'_{14}$ modulo 3.

 $(\chi_{32} - \chi_{33}, \chi_6 \chi_{22}) = 1$. Hence $\chi_6 \chi_{22} = a \chi_{32} + (a - 1)\chi_{33} + \cdots$. Therefore

$$
\zeta_6 \chi_{22}^* = (2a-1)\chi_{32}^* + \cdots
$$

Hence $m_p(\chi_{32}^*) = 1$ for $p \neq 5$.

HS, {2, 3, 5}

All characters of G except $\chi_{11}, \chi_{12}, \chi_{41}, \chi_{42}$ have values in \mathbb{Q}_5 . Thus $m_5(\zeta) = 1$ for every irreducible character ζ of 2.G.2 and 2.G.2*i* except possibly χ_n^* , $n = 11, 12, 41, 42.$

 $\chi_{11}^* = \chi_{12}^*$. $m_3(\chi_{11}^*) = 1$ as $\sqrt{-5} \in \mathbb{Q}_3$. Theorem C, 6A for $p = 5$. $\chi_{14}^* = \chi_{15}^*$. Theorem A, 11A.

$$
2.G.2, \qquad 2.G.2i
$$

 $\mathbb{Q}(\sqrt{-7})$ splits χ_{32} . $\mathbb{O}(\sqrt{-10})$ splits χ_{35} . $\mathbb{Q}(\sqrt{-15})$ splits χ_{36} . $\mathbb{Q}(\sqrt{5},\sqrt{\frac{\sqrt{5}-5}{2}})$ splits χ_{41}, χ_{42} . $\chi_{26}^* = \chi_{27}^*, \chi_{30}^* = \chi_{31}^*, \chi_{37}^* = \chi_{38}^*$. Irreducible mod 3. $\chi_{39}^* = \chi_{40}^*$. Theorem A, 11A. Modulo 5 we have $\chi_{28}^* = \chi_{29}^* = \varphi_{880} + \varphi_{240} + 2\varphi_{56}.$ $\chi_{33}^* = \chi_{34}^* = \varphi_{912} + \varphi_{1552}.$

$$
J_3, \{2,3\}
$$

 $\mathbb{Q}(\zeta_9) = \mathbb{Q}(\sqrt{6})$ is a splitting field for ζ_9 and ζ_9' .

Theorem A applies to $\chi_2^* = \chi_3^*$; 19A. $\chi_4^* = \chi_5^*, \chi_7^* = \chi_8^*, \chi_{17}^* = \chi_{18}^*$; 15A. Each of these characters is rational valued.

 $\mathbb{Q}(\zeta)$ has only one place over 3 for every irreducible faithful character ζ of 3.G.2. Theorem B applies to every faithful character with one of the classes 1A, 3A or 17A.

$$
McL, \{2,3,5\}
$$

$$
G.2
$$

 $\mathbb{Q}_2(\chi) = \mathbb{Q}_2(\chi^*)$ for every irreducible character of G. Hence $m_2(\chi^*) = 1$. $\mathbb{Q}(\sqrt{-5})$ splits χ_{11} . $\mathbb{Q}(\sqrt{-6})$ splits χ_{13} . Every irreducible Brauer character of $G.2$ has values in \mathbb{Q}_5 . $\chi_{16}^* = \chi_{17}^*, \chi_{23}^* = \chi_{24}^*$. Theorem C, 1A for $p = 5$. $\chi_5^* = \chi_6^*, \chi_{18}^* = \chi_{19}^*$. Theorem C, 3A for $p = 5$. $\chi_{16}^* = \chi_{17}^*$. Theorem A, 9A.

3.G.2

There is exactly one place over 3 in $\mathbb{Q}(\chi^*)$ for every faithful irreducible character $\chi \neq \chi_{25}, \chi_{26}$.

 χ_{35}^* , χ_{38}^* , χ_{39}^* , χ_{40}^* , χ_n^* for $42 \leq n \leq 45$. Theorem B, 1A.

 $\chi_{31}^*, \chi_{32}^*, \chi_{41}^*$. Theorem B, 11A.

 χ_{28}^*, χ_{33}^* . Theorem B, 3A.

 χ_{29}^*, χ_{30}^* . Theorem A, 7A.

 $((\chi_{25} - \chi_{26}), \chi_7 \chi_{35}) = 1$. Hence $\chi_7 \chi_{35} = a \chi_{25} + (a-1) \chi_{26} + \cdots$ and so $\zeta_7 \chi_{35}^* = a \chi_{25}^* + (a-1) \chi_{26}^* + \cdots$. Thus $\mathbb{Q}(\sqrt{-11})$ is a splitting field for

 $\chi_{25}^*, \chi_{26}^*.$

```
(\chi_2\chi_{45})^*, \chi_{37}^* = (\chi_2\chi_{45}, \chi_{37}) = 1.((\chi_3\chi_{45})^*, \chi_{27}^*) = (\chi_3\chi_{45}, \chi_{27}) = 1.((\chi_3\chi_{45})^*,\chi_{36}^*) = (\chi_3\chi_{45},\chi_{36}) = 21.\chi_{34}^* is irreducible modulo 5.
\chi^*_{34|_{3M_{22}}} = \eta^*_{33} + \cdots.
m(\eta_{33}^*) = 1. \mathbb{Q}(\eta_{33}^*) = \mathbb{Q}(\sqrt{-7}) \subseteq Q_2. Hence m_2(\chi_{34}^*) = 1.
```

$$
He,\{2,3,5,7\}
$$

Theorem A applies to $\chi_2^* = \chi_3^*, \chi_4^* = \chi_5^*, \chi_{17}^* = \chi_{18}^*, \chi_{23}^* = \chi_{24}^*, 7A. \chi_7^* = \chi_8^*;$ 17A. Each of these characters is rational valued.

Every irreducible Brauer character for $p = 7$ of $G.2$ has values in $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}_7$.

 $\chi_{20}^* = \chi_{21}^*$. Theorem A, 21C. Theorem C, 3B for $p = 7$.

Vol. 93, 1996

SCHUR INDICES 241

 $\chi_{10}^* = \chi_{11}^*$. Theorem 1A for $p = 3$ since every Brauer character in the 3-block containing χ_{10}^* is rational valued. χ_{10}^* has defect 0 for $p = 5$. Since $\sqrt{-7} \in \mathbb{Q}_2, m_2(\chi_{10}^*) = 1.$

$$
Suz, \{2,3,5\}
$$

2.G

By Theorem A, 28A, χ_{74} is split at 3. Hence $m_{\infty}(\chi_{74}) = m_2(\chi_{74}) = 2$.

G.2

 $\mathbb{O}(\sqrt{10})$ splits χ_{40} .

 $\chi_7^* = \chi_8^*, \chi_{21}^* = \chi_{22}^*$. Theorem A, 9A.

 $\chi_{31}^* = \chi_{32}^*$. Theorem A, 13A.

 $\chi_{25}^* = \chi_{26}^*$. Theorem A, 21A.

 $\chi_{13}^* = \chi_{14}^*$. Theorem A, 15A. Theorem C, 1A for $p = 3$.

 $\chi_{18}^* = \chi_{19}^*$. Defect 0 for 5. Theorem C, 1A for $p = 3$.

$$
2.G.2, \qquad 2.G.2i
$$

 $\mathbb{Q}(\sqrt{-2})$ splits ζ_n for $n = 44, 52, 53, 64, 65, 66, 69, 73, 75.$ $\mathbb{Q}(\sqrt{-5})$ splits ζ_n for $n = 49, 68, 72, 76$. $\mathbb{Q}(\sqrt{-11})$ splits ζ_{67} . $\mathbb{Q}(\sqrt{-14})$ splits ζ_{74} . $\chi_{47}^* = \chi_{48}^*, \chi_{50}^* = \chi_{51}^*$. Theorem A, 9A. $\chi_{56}^* = \chi_{57}^*$. Theorem A, 21A. $\chi_{58}^* = \chi_{59}^*$. Theorem A, 15A. Defect 1 for 5. $\chi_{60}^* = \chi_{61}^*$. Theorem A, 13A. $(\chi_2\chi_{47}, \chi_{45} - \chi_{46}) = 1 = (\chi_2\chi_{47}, \chi_{55} - \chi_{54})$. Hence

$$
\chi_2\chi_{47}=a\chi_{45}+(a-1)\chi_{46}+b\chi_{54}+(b+1)\chi_{55}+\cdots
$$

and so

$$
\zeta_2 \chi_{47}^* = (2a-1)\chi_{45}^* + (2b+1)\chi_{54}^* + \cdots.
$$

Therefore $m(\chi_{45}^*) = 2$ or $m(\chi_{54}^*) = 2$ implies that $m(\chi_{47}^*) = 2$ which is not the case.

 $(\zeta_2\zeta_{67},\chi_{62}^*) = (\chi_2\chi_{67},\chi_{62}) = 1.$ ζ_{67} is split by $\mathbb{Q}(\sqrt{-11}), \mathbb{Q}(\sqrt{11}, \sqrt{-11})$ for 2.G.2, 2.G.2*i* respectively. Thus $m_5(\chi_{62}^*) = 1$ and $m_3(\chi_{62}^*) = 1$ in case 2.G.2.

Let $x \in 2.G$ with its image in G in 12D. Hence $x^{12} = -1$ is in the center of 2.G. Let x_3 be the 3-part of x and let S , \hat{S} be a S_2 -group of $\mathbb{N}_{2,2}(x)$, $\mathbb{N}_{2,G,2i}(\langle x \rangle)$ respectively. Let $L = \langle x \rangle S, \hat{L} = \langle x \rangle \hat{S}$. Thus $|\langle x \rangle| = 24$ and $|L: \langle x \rangle| =$ 8. Let λ be a faithful linear character of $\langle x \rangle$ and let $\eta = \lambda^L,~\hat{\eta} = \lambda^{\hat{L}}$. Then $\eta(1) = 8, \eta(x_3) = -4$ and η vanishes on elements of L distinct from $\pm 1, \pm x_3$.

Let χ be a faithful irreducible character of 2.G so that χ^* is irreducible. $\chi^* \eta$ is a character of L with -1 in the kernel. Hence

$$
(\chi^*, \eta) = (\chi^* \eta, 1) = \frac{1}{96} (8\chi^*(1) - 8\chi^*(x_3)) = \frac{1}{12} (\chi^*(1) - \chi^*(x_3)).
$$

Hence (χ_{62}^*, η) is odd.

Let $p = 3$. The other two irreducible characters η_1 and η_2 in the 3-block of L which contains η are the irreducible constituents of $(\lambda^3)^L$. Now Lemma 2.4 implies that $m_3(\chi_{62}^*) = 2$ for either 2.G.2 or 2.G.2*i*, hence for 2.G.2*i*.

Modulo 5

 $\chi_{70}^* = \chi_{71}^* = 2\varphi_{1144} + \varphi_{3784} + \varphi_{122472} + \varphi_{15974}.$

Hence $m_5(\chi_{70}^*) = 1$.

 $\chi_{70}^* = \chi_{71}^*$. Theorem C, 5A for $p = 3$ in case 2.G.2. Hence $m_3(\chi_{70}^*) = 1$ in this case.

Let $y \in 2.G$ with its image in G in 24A. Let $C = \langle y \rangle \times \langle -1 \rangle$, $L = N_{2.G.2}(\langle y \rangle)$, $\hat{L} = \mathbb{N}_{2,G,2i}(\langle y \rangle)$. Then $|C| = 48$ and $|L: C| = 8$. Let μ be a linear character of C with kernel $\langle -y^{12} \rangle$ and let $\eta = \mu^L, \hat{\eta} = \mu^{\hat{L}}$. Then the following holds:

Furthermore, $\eta(-u) = -\eta(u)$ for $u \in C$ and η vanishes on the remaining elements of C. Hence $\chi_{70}^* \eta$ is a character of L with -1 in its kernel. Thus

$$
(\chi_{70}^*, \eta) = (\chi_{70}^* \eta, 1) = \frac{1}{8.24} (8\chi_{70}^*(1) - 8.126 + 8.6 - 8.336)
$$

$$
= \frac{\chi_{70}^*(1)}{24} - 19.
$$

Hence (χ_{70}^*, η) is odd.

Let $p = 3$. The other two irreducible characters η_1, η_2 in the 3-block of L which contains η are the irreducible constituents of $(\mu^3)^L$. Now Lemma 2.4 implies that $m_3(\chi_{70}^*) = 2$ for either 2.*G*.2 or 2.*G*.2*i*, hence for 2.*G.*2*i*.

3.G.2

 $\mathbb{Q}(\chi)$ has only one place over 3 for every character χ such that $\chi(x)$ is odd for a 3-element x .

 χ_{89}^* , χ_{107}^* . Theorem B, 11A.

 χ_{108}^* . Theorem B, 7A.

Since χ_{92}^* and χ_{105}^* are not in the same 3-block as χ_{87}^*, χ_{88}^* , Theorem C may be applied.

 χ_{92}^* . Theorem C, 13A for $p=3$. Defect 0 at 5.

 χ_{105}^* . Theorem C, 13A for $p = 3$. Theorem B, 5A.

$$
6.G.2, \qquad 6.G.2i
$$

 χ_n^* , $n = 116, 117, 119, 120, 124, 128, 131, 135, 137, 140, 142, 143$. Theorem A, 9A.

 χ_n^* , $n = 115, 118, 138, 141$. Theorem B, 3B.

 χ_n^* , $n = 129, 130, 132, 133, 136$. Theorem B, 11A.

Since χ_{132}^* and χ_{133}^* are in 3-blocks of defect 1, Theorem C can be applied at $p = 3$ for other characters.

 χ_{121}^* , χ_{122}^* . Theorem C, 13A for $p = 3$. Theorem B, 5A. χ_{126}^* . Theorem C, 13A for $p = 3$. Defect 0 for 5. χ_{134}^* . Theorem C, 5A for $p = 3$. Defect 0 for 5. $\chi_{123}^* = \zeta_5 \chi_{115}^*$.

$$
(\zeta_4 \chi_{132}^*, \chi_{125}^*) = (\chi_4 \chi_{132}, \chi_{125}) = 1.
$$

$$
(\zeta_6 \chi_{132}^*, \chi_{127}^*) = (\chi_6 \chi_{132}, \chi_{127}) = 13.
$$

So $\mathbb{Q}(\sqrt{-39})$ splits χ_{125}^* and χ_{127}^* . Hence

$$
m_2(\chi_{125}^*) = m_5(\chi_{125}^*) = m_2(\chi_{127}^*) = m_5(\chi_{127}^*) = 1.
$$

$$
(\zeta_{43}\chi_{115}^*, \chi_{139}^*) = (\chi_{43}\chi_{115}, \chi_{139}) = 1.
$$

Hence $m_p(\chi_{139}^*) = 1$ for $p \neq 3$.

ON, {2, 3, 7}

 $\mathbb{Q}_7(\chi) = \mathbb{Q}_7(\chi^*)$ for every irreducible character χ of 3.G. Hence $m_7(\chi^*) = 1$ for all χ .

 $\chi_3^* = \chi_4^*$. Theorem A, 31A.

 $\chi_5^* = \chi_6^*$. $\sqrt{5} \in \mathbb{Q}_3$ and so $m_3(\chi_5^*) = 1$.

 $\chi_{16}^* = \chi_{17}^*$. Modulo 3, φ_1 has multiplicity 3 in χ_{16} , and so in χ_{16}^* .

If χ is an irreducible faithful character of 3.G.2 with $\chi(1)$ odd or $\chi(x)$ odd for x in 5A, then $m_2(\chi^*) = 1$. In each of these cases there is only one place over 3 in $\mathbb{Q}(\chi^*)$ unless $\chi = \chi_{38}$ or χ_{39} .

Modulo 5 χ_{38}^* and χ_{39}^* contain φ_{51522} with multiplicity 1.

For the remaining characters χ , there is only one place over 3 in $\mathbb{Q}(\chi)$.

Theorem B for 19A can be applied to a cubic extension of $\mathbb Q$ to handle χ_{45}^* and χ_n^* for $50 \leq n \leq 55$.

 χ_{46}^*, χ_{47}^* . Theorem B, 7A.

$$
Fi_{22},\{2,3,5\}
$$

 $\chi_{22}^* = \chi_{23}^*$. Theorem A, 13A.

 $\chi_{40}^* = \chi_{41}^*, \chi_{51}^* = \chi_{52}^*$. Theorem A, 11A. $\chi_{33}^* = \chi_{34}^*$. Defect 0 for 5. $m_3(\chi_{33}^*) = 1$ as $\sqrt{-2} \in \mathbb{Q}_3$.

 $\chi_{43}^* = \chi_{44}^*$. $(\zeta_{45}\zeta_{48}, \chi_{43}^*) = (\chi_{45}\chi_{48}, \chi_{43}) = 5211$.

```
2.G.2, 2.G.2i
```
 $\chi_{69}^* = \chi_{70}^*, \chi_{71}^* = \chi_{72}^*$. Theorem A, 11A. $\chi_{105}^* = \chi_{106}^*$. Theorem A, 13A.

3.G.2

All characters with $\chi(x)$ odd for x of order 1, 3 or 9 are settled by Theorem B.

 χ_{140}^* . Theorem B, 21A. χ_{154}^* . Theorem B, 5A. Defect 1 for 5. χ_{148}^* , χ_{149}^* (χ_{148} , $\chi_{65}\chi_{140}$) = (χ_{149} , $\chi_{65}\chi_{140}$) = 33283. Hence $\zeta_{65}\chi_{140}^* = 33283(\chi_{148}^* + \chi_{149}^*) + \cdots$.

6G2, *6G2i*

All characters except χ_{194} are settled by Theorem B and one of 7A, 9A, 21A or Theorem A, 13A.

$$
(\chi_{194}^*, \chi_2 \chi_{173}^*) = (\chi_{194}, \chi_2 \chi_{173}) = 1.
$$

Thus $m_p(\chi_{194}^*) = m_p(\chi_{173}^*)$ for all primes p.

$$
HN, \{2,3,5\}
$$

 $\mathbb{Q}(\sqrt{6})$ is a splitting field for χ_{42} . $\chi_2^* = \chi_3^*, \chi_6^* = \chi_7^*, \chi_{13}^* = \chi_{14}^*, \chi_{27}^* = \chi_{28}^*$. Theorem A, 5C. $\chi_{11}^* = \chi_{12}^*, \chi_{21}^* = \chi_{22}^*, \chi_{30}^* = \chi_{31}^*$. Theorem A, 25A. $\chi_{25}^* = \chi_{26}^*$. Theorem A, 19A. $\chi_{15}^* = \chi_{16}^*$. Theorem A, 35A. $(\zeta_{34}^2, \chi_{35}^*) = (\chi_{34}^2, \chi_{35}) = 9223$. Hence $m (\chi_{35}) = 1$.

Fi'24, {2, 3, 5, 7}

Every character of G.2 lies in $\mathbb{Q}(\sqrt{33}, \sqrt{-23}, \sqrt{13})$ and so every Brauer character modulo 3 lies in $\mathbb{Q}(\sqrt{-23}, \sqrt{13}) \subseteq \mathbb{Q}_3$. Every character in a 5-block of positive defect lies in $\mathbb{Q} \subseteq \mathbb{Q}_5$.

 $\chi_{14}^* = \chi_{15}^*$. $\sqrt{-3} \in \mathbb{Q}_7$, defect 0 for 5, Theorem C, 7A for $p=3$. Thus $m_p(\chi_{14}^*) = 1$ for $p = 3, 5$ or 7.

 $\chi_{60}^* = \chi_{61}^*$, $\chi_{77}^* = \chi_{78}^*$. Theorem A, 21A. Theorem C for $p = 3$ with 17A for χ_{60}^* and 5A for χ_{77}^* .

 $\chi_{69}^* = \chi_{70}^*$. Theorem A, 39C.

 $\chi_{91}^* = \chi_{92}^*$. Theorem A, 29A.

 $\chi_{99}^* = \chi_{100}^*$. Theorem A, 45A. Theorem C, 3E for $p = 5$.

 $\chi_{101}^* = \chi_{102}^*$. Defect 0 for 5 and 7. Theorem C, 13A for $p = 3$.

 χ_{128}^* , χ_{129}^* , χ_{171}^* , χ_{173}^* . Theorem B, 13A.

 χ_{172}^* , χ_{175}^* . Theorem B, 11A.

 χ_{135}^* . Theorem B, 5A and 7A.

 χ_{174}^* . Theorem B, 33A.

6. Tables

The first column gives the name of the group.

If n is even *n.G.2* denotes the group whose character table is printed in the ATLAS and *n.G.2i* denotes the group isoclinic to, but not isomorphic to, *n.G.2.*

The second column identifies the character.

n* denotes the faithful character of H.2 or *H.2i* induced from the character χ_n of H in the ATLAS in case the induced character is irreducible. n, n' denote the 2 extensions of χ_n to H.2 or H.2*i* otherwise.

In case $G = M_{22}$, $\overline{30}$ denotes the complex conjugate of 30 for 4.G. For 12.G.2 α is the automorphism of $\mathbb{Q}(\sqrt{11}, \sqrt{3})$ whose fixed field is $\mathbb{Q}(\sqrt{11})$ and β is the nonidentity automorphism of $\mathbb{Q}(\sqrt{3})$.

The third column contains the degree of the character.

The fourth column has the field generated by the character values.

The last column has a list of all the places in Q for which the Schur index is not 1, hence 2. Characters with Schur index 1 are not listed.

			1412		
$_{\infty,2}$	Q	32	19	2.G	
2,5	Q	88	$20^* = 21^*$	2.G.2	
∞ $\infty, 5$ $\infty,2$ $\infty, 11$	$\mathbb{Q}(\sqrt{2})$ OO	32 88 220 320	19, 19' $20^* = 21^*$ $22^* = 23^*$ $25^* = 26^*$	2.G.2i	
			M_{22}		
$\infty, 11$ $\infty,2$	$\frac{\mathsf{Q}}{\mathsf{Q}}$	252 308	$17^* = 18^*$ $19^* = 20^*$	2.G.2i	
$\bf 5$	$\mathbb{Q}(\sqrt{-1})$	176	$30, \overline{30}$	4.G	
∞ $\infty,5$ $\infty,2$	$Q(\sqrt{11})$ Q	320 352 1120	28^* , 29^* $30*$ $31*$	4.G.2	
$\boldsymbol{2}$ 2,5	$\mathbb{Q}(\sqrt{-7})$ Q	288 352	26^* , 27^* $30*$	4.G.2i	
3,5	Q	768	$52*$	6.G.2	

 \overline{M} .

Suz

	$\mathbf Q$	197120	40	G
$\infty, 2$		220	44	2.G
$\infty, 5$		4928	49	
$\infty, 2$	OOOO	20020	52	
$\infty, 2$		20020	53	
	$\mathbb{Q}(\sqrt{21})$	35100	56,57	
	$\mathbb{Q}(\sqrt{5})$	60060	58,59	
	$\mathbb{Q}(\sqrt{13})$	61236	60,61	
	${^{Q\bigvee\!\!\!\!Q}} \atop{Q\bigvee\!\!\!\!Q\bigvee\!\!\!\!Q\bigvee\!\!\!\!S\bigvee\!\!\!\!S}} \!\!\! \mathbb{Q}(\sqrt{2})$	79872	62,63	
∞ ,2		80080	64	
$\infty, 2$		80080	65	
∞ ,2		100100	66	
∞ ,11		102400 128128	67 68	
$\infty, 5$ ∞ ,2		137280	69	
		144144	70,71	
$\infty, 5$		192192	72	
∞ , 2		197120	73	
∞ ,2		228800	74	
∞ , 2		277200	75	
$\infty\;,5$		315392	76	
		70200	$54* = 55*$	2.G.2
∞ ,3		70200	$56* = 57*$	
∞ ,5		120120	$58* = 59*$	
$\infty, 13$		122472	$60^* = 61^*$	
$\infty, 2$	000000	159744 288288	$62^* = 63^*$ $70^* = 71^*$	
$\infty, 2$				
	$Q(\sqrt{2})$ $Q(\sqrt{2})$	220	44, 44'	2.G.2i
∞ , 3		728	$45^* = 46^*$	
$\infty, 3$		1144	$47^* = 48^*$	
	$\mathbb{Q}(\sqrt{5})$	4928	49, 49'	
∞ ,3	Q	32032	$50^* = 51^*$	
	$\mathbb{Q}(\sqrt{2})$	20020	52, 52'	
		20020	53, 53'	
∞ , 3		70200	$54^* = 55^*$ $56* = 57*$	
∞ ,3		70200 120120	$58* = 59*$	
$\infty, 5$ $\infty, 13$		122472	$60^* = 61^*$	
∞ ,3	$Q(\sqrt{2})$	159744	$62^* = 63^*$	
	$\mathbb{Q}(\sqrt{2})$	80080	64, 64'	
	$\mathbb{Q}(\sqrt{2})$	80080	65, 65'	
	$\mathbb{Q}(\sqrt{2})$	100100	66,66'	
	$\mathbb{Q}(\sqrt{11})$	102400	67,67'	
	$\mathbb{Q}(\sqrt{5})$	128128	68,68'	

References

- [1] M. Benard, *Schur indices and cyclic* defect *groups,* Annals of Mathematics 103 (1976), 283-304.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *ATLAS of Finite Simple Groups,* Clarendon Press, Oxford, 1985.
- [3] W. Feit, *The Representation Theory of Finite Groups,* North-Holland, Amsterdam, London, 1982.
- [4] W. Feit, *The computations* of some *Schur indices,* Israel Journal of Mathematics 46 (1983), 274-300.
- [5] G. Hiss and K. Lux, Brauer Trees *of Sporadic Groups,* Clarendon Press, Oxford, 1985.
- [6] C. Jansen, *Tables of* Brauer *characters of certain finite* groups, personal communication.
- [7] C. Jansen and R. A. Wilson, *The 2-modular and 3-modular decomposition numbers for the sporadic simple O'Nan group and* its *triple cover,* to appear.
- [8] R. A. Wilson, *Tables of* Brauer characters *of certain finite* groups, personal communication.